A multilinear operator for almost product evaluation of Hankel determinants
نویسندگان
چکیده
In a recent paper we have presented a method to evaluate certain Hankel determinants as almost products; i.e. as a sum of a small number of products. The technique to find the explicit form of the almost product relies on differential-convolution equations and trace calculations. In the trace calculations a number of intermediate nonlinear terms involving determinants occur, but only to cancel out in the end. In this paper, we introduce a class of multilinear operators γ acting on tuples of matrices as an alternative to the trace method. These operators do not produce extraneous nonlinear terms, and can be combined easily with differentiation. The paper is self contained. An example of an almost product evaluation using γ-operators is worked out in detail and tables of the γ-operator values on various forms of matrices are provided. We also present an explicit evaluation of a new class of Hankel determinants and conjectures. Mathematics Subject Classifications: 05A10, 05A15, 05A19, 05E35, 11C20, 11B65
منابع مشابه
Almost Product Evaluation of Hankel Determinants
An extensive literature exists describing various techniques for the evaluation of Hankel determinants. The prevailing methods such as Dodgson condensation, continued fraction expansion, LU decomposition, all produce product formulas when they are applicable. We mention the classic case of the Hankel determinants with binomial entries 3k+2 k and those with entries 3k k ; both of these classes o...
متن کاملMultilinear Hankel Operator
We extend to multilinear Hankel operators a result on the regularity of truncations of Hankel operators. We prove and use a continuity property on the bilinear Hilbert transforms on product of Lipschitz spaces and Hardy spaces. In this note, we want to extend to multilinear Hankel operators a result obtained by [BB] on the boundedness properties of truncation acting on bounded Hankel infinite m...
متن کاملA Sharp Maximal Function Estimate for Vector-Valued Multilinear Singular Integral Operator
We establish a sharp maximal function estimate for some vector-valued multilinear singular integral operators. As an application, we obtain the $(L^p, L^q)$-norm inequality for vector-valued multilinear operators.
متن کاملar X iv : m at h / 05 11 12 7 v 1 [ m at h . FA ] 5 N ov 2 00 5 Factorization theory for Wiener - Hopf plus Hankel operators with almost periodic symbols
A factorization theory is proposed for Wiener-Hopf plus Hankel operators with almost periodic Fourier symbols. We introduce a factorization concept for the almost periodic Fourier symbols such that the properties of the factors will allow corresponding operator factorizations. Conditions for left, right, or both-sided invertibility of the Wiener-Hopf plus Hankel operators are therefore obtained...
متن کاملWeighted slant Toep-Hank Operators
A $it{weighted~slant~Toep}$-$it{Hank}$ operator $L_{phi}^{beta}$ with symbol $phiin L^{infty}(beta)$ is an operator on $L^2(beta)$ whose representing matrix consists of all even (odd) columns from a weighted slant Hankel (slant weighted Toeplitz) matrix, $beta={beta_n}_{nin mathbb{Z}}$ be a sequence of positive numbers with $beta_0=1$. A matrix characterization for an operator to be $it{weighte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 117 شماره
صفحات -
تاریخ انتشار 2010